Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

-Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

-Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

-Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. -Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Where Do We Get Our Drinking Water?

CADDO BASIN SUD is Purchased Surface Water from NTMWD, Lake Lavon, Wylie, Collin County

Source Water Assessment

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on the susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and production efforts at our system, contact Leahmon Bryant, General Manager (903)

All Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Cryptosporidium and Drinking Water

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-479

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps

you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information About Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL:

Further details about sources and source-water assessments are available in

http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

artifer details about sources and source water assessments are available in
Orinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW
ource Water Name LAKE LAVON CC FROM TX0430004 CITY OF Type of Water SV
Report Status
ocation
ource Water Name SW FROM NORTH TEXAS MWD CC FROM TX0430044 NORTH
ype of Water SW
Report Status
ocation

DEFINITIONS

The following tables contain scientific terms and measures, some of which may require

AVG- Regulatory compliance with some MCLs are based on running annual average of monthly

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology

LEVEL 1 ASSESSMENT- A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. LEVEL 2 ASSESSMENT- A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple

MAXIMUM RESIDUAL DISINFECTANT LEVEL OR MRDL- The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

MAXIMUM RESIDUAL DISINFECTANT LEVEL or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. MFL- million fibers per liter (a measure of asbestos)

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

MREM-: millirems per year (a measure of radiation absorbed by the body)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water

NTU nephelometric turbidity units (a measure of turbidity)

ppt parts per trillion, or nanograms per liter (ng/L)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppq parts per quadrillion, or picograms per liter (pg/L)

CADDO BASIN SUD 2016 MONITORING RESULTS

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Level (

						Regulated Contaminants	Regulate
	qdd	1	1.88	15	0	LEAD	2016
	mdd	1	0.8774	1.3	1.3	COPPER	2016
Š	UNITS	# SITES OVER AL	90" PERCENTILE	ACTION LEVEL	MCLG	LEAD AND COPPER	YEAR

of natur

LEAD 0 15				Regulated Contaminants	Regulated
COPPER 1.3 0.8774 1	1.88	15	0	LEAD	2016
	0.8774	1.3	1.3	COPPER	2016

Source of Conta Likely ! qdd qdd 2 9 8 GOAL FOR TOTAL GOAL FOR TOTAL MCLG 10 9 9 nge of Lev Detected 17.6-35.7 Nitrate

2016

Annual Drinking Water Quality Report

PWS ID: 1160029

Our Drinking Water Is Regulated

This Annual Water Quality Report for the period of January 1 to December 31, 2016. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

In 2016 Caddo Basin SUD distributed 344,649,180 gallons of water to our customers. For the time period of Jan-Dec 2016, our system lost an estimated 9,374,458 gallons of water. If you have any questions about the water loss please call (903) 527-3504.

For More Information About Caddo Basin Special Utility District

If you have questions about this report or concerning your water utility, please contact Leahmon F. Bryant, General Manager, by calling (903) 527-3504 or writing to 156 CR 1118, Greenville, TX 75401-7514. You may also send an email to webadmin@caddobasin.com. We want our valued customers to be informed about their water utility. The Board Meetings are held the Fourth Tuesday of each month at 6:30 PM at The District Office located at 156 CR 1118, Greenville, TX.

CBSUD Board of Directors	
Jerry Leinart	President
Bill Daniel	Vice-President
Elwood Jones	Secretary/Treasurer
Donald Hall	Director
James C. Patterson	Director
Mickey Pierson	Director
Gene Martin	Director

En Español Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (903) 527-3504-para hablar con una persona bilingüe en español.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water.

reshort periods of time because of rainfal or agricultural activity. If you are caring for an infant you should ask advice from your health care provider. Part Part	Year	Contaminant	Highest	Range	MCL	MCLG	Units	Violation	Source of Contamine	nt			
1906 1906					REGULATI	ED CONTAMIN	NANTS						
March			The state of the state of	2.2	,	4		No.	D' la control		Constant	landa a considerada de la considerada del considerada de la considerada del considerada de la considerada del considerada de la considerada de la considerada de la considerada de la considerada del consid	
Manual M	2016	Antimony		0-0	6	6	ppp	INO					
	2016	Arsenic		0.0-0.9	0	10	ppb	No		osits; runoffs o	orchards;	runoff from glass and electronics	
Continue	2016	Barium	0.061	0.042-0.061	2	2	ppm	No	Discharge of drilling w	astes;discharç	ge from m	etal refineries; erosion of natural deposits	
Montange	2016	Beryllium		0-0	4	4	ppb	No			coal-buri	ning factories;discharge from electrical,	
200	2016	Cadmium		0-0	5	5	ppb	No					
Note 1	2016	Chromium	1.2	0.52-1.20	100	100	ppb	No	Discharge from steel	and pulp mills;	erosion o	f natural deposits.	
Mode	2016	Fluoride	0.93	0.13-0.93	4	4	ppm	No			lditive whi	ich promotes strong teeth; discharge	
Mitograph NTMANO	2016	Mercury		0-0	2	2	ppb	No			je from re	fineries and factories; runoff from	
Miles Mile	2016		1	0.41-0.512	10	10	ppm	No		se; leaching fr	om septic	tanks; sewage; erosion of natural	
Note Advisory Nation Levels (ower than delect 0-0 0.5 2 ppb No Discharge Born electronics, glass, and leaching from one processing sites, drug 1 1 1 1 1 1 1 1 1	2016	Nitrate (measured as	0.79	0.05-0.079	10	10	ppm	No					
Note	2016		3.4	1.4-3.4	50	50	ppb	No	Discharge from petrol	eum refineries	erosion	of natural deposits discharge from mines.	
The short perceive of sinfer to exacuse of sinfer or spring for an infant you should ask adule from your health care provider.			level						factories.				
SADURATIVE CONTAMINANTS								can causel	blue baby syndrome. N	trate levels ma	y rise quio	ckly	
S2/2016			unurar activity. If you are caring for a	n iniani you should a	ask advice irom y	our neaith ca	ire provider.						
SCAPE Cores alpha excluding radion Levels lower than detect 0-0 0 15 pC/L No Evaluation E			5.6	5.6-5.6	0	50	pCi/L	No	Decay of natural and	man-made de	posits		
		Gross alpha excluding radon	Levels lower than detect		0			No					
DISNIFECTION BY PRODUCT OF DRINKING WATER DISENFECTION BY PRODUCT OF DRINKING WATER DISENFECTION (ref the forth of the forth of the forth of the forth of the fold) 2016 TOTAL TRIHALOMETHANES 36 20.7-56.5 No goal for the total No goal f	5/2/2016		Levels lower than detect	0-0	0	5	pCi/L	No	Erosion of natural dep	osits			
(HAA5)	DISINFECTA	NTS & DISINFECTION BY-PRODUCTS	5				-		-				
TOTAL TRHALOMETHANES (17HM) 20 20.7-56.5 No goal for the total 10 ppb No BY-PRODUCT OF DRINKING WATER DISENTECTION 10 BROMATE 6 0 0.0-6.0 5 10 ppb No BY-PRODUCT OF DRINKING WATER OZONATION 10 ppc No BY-PRODUCT OZONATION 10 ppc No BY-PRODUCT OF DRINKING WATER OZONATION 10 Ppc No BY-PRODUCT OZONATION	2016		24	17.3-35.7	for the	60	ppb	No					
2016 BROMATE 6 0.0-6.0 5 10 ppb No BY-PRODUCT OF DRINKING WATER OZO-NATION	2016		36	20.7-56.5	No goal for the	80	ppb	No	BY-PRODUCT OF DRINKING WATER DISENFECTION				
NOTE: NOT ALL SAMPLE RESULTS MAY HAVE BEEN USED FOR CALCULATING THE HIGHEST LEVEL DETECTED BECAUSE SOME RESULTS MAY BE PART OF AN EVALUATION TO DETERMINE WHERE COMPLIANCE SAMPLING SHOULD OCCUR N THE FURTURE. 2016 SOURCE WATER 4.23 3.14-4.23 ppm NATURALLY PRESENT IN THE ENVIRONMENT 2016 DRINKING WATER 2.8 1.37-2.80 ppm NATURALLY PRESENT IN THE ENVIRONMENT 2016 REMOVAL RATIO 6.3,90% 25.7-63.9 % REMOVAL N/A NOTE: Total organic (TiOC) has no health effects. The disinfectant can combine with TOC to form desinfection by-products. Disinfection in secessary to ensure that water does not have unacceptable levels of divided by the percent of TOC required by TCEO to be removed. 2016 REMOVAL RATIO 0.0 no near the simple desing the second of TOC required by TCEO to be removed. 2016 Giardia 0.0 0-0 0.0 Cysts/L 2017 Treatment Technique) Violation Likely Source of Conatmination 4 INTIU 0.78 No Soil runoff 4 Lowest monthly percentage (%) meeting fimit 0.3 NTU 96.20% No Soil runoff 4 NOTE: Tutbidily is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our literation. AXXMUM RESIDUAL DISNIFECTANT LEVEL Year Chemical used Average Level of Quarterly Data Sample No Sample No RDL WRDL WRDL WRDL WRDL WRDL WRDL WRDL	2016	DDOMATE	6	0060		10	nnh	No	BY-PRODUCT OF DRINKING WATER OZONATION				
COMPLIANCE SAMPLING SHOULD OCCUR IN THE FUTURE. SOURCE WATER 4.23 3.14-4.23 9 pm 10 ppm			· ·		_								
2016 SOURCE WATER 4.23 3.14-4.23 ppm NATURALLY PRESENTINTHE ENVIRONMENT 2.8 1.37-2.80 ppm NATURALLY PRESENTINTHE ENVIRONMENT 2.8 2.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1				THORIEST ELVEED	LIEGILD BLOW	DOL DOME NE	-30E13 W/(1	DETAILT	SI THE VILLOTTION IN	DETERMINE	WILLINE		
2016 REMOVAL RATIO 63.90% 25.7-63.9 SemOVAL NOTE: Total organic (TOC) has no health effects. The disinfectant can combine with TOC to form desinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products od disinfection include trihabomethanes (THMs) & haloacetic acids (HAA) which are reported elsewhere in this report. *removal ratio is the percent of TOC required by TCC of the percent of TOC required by TCC to to be removed. 2016 CRYPTOSPORDIUM 0 0 0-0 0 0 0 Cysts/L 2016 Giardia 0 0 0-0 0 0 Cysts/L 2016 Giardia 0 0 0-0 0 0 0 Cysts/L 2016 Giardia 0 0 0-0 0 0 0 Cysts/L 2016 William of the complete of the co		1											
2016 REMOVAL RATIO 63.90% 25.7-63.9 % REMOVAL NOTE: Turbidity is a measurement I the cloudiness of the water caused by suspended particles. We monitor it but water for sample. 2016 REMOVAL RATIO 63.90% 25.7-63.9 % REMOVAL DISINFECTANT LEVEL Year Chemical used Agreement Concept and the district of the disinfectant can combine with TOC to form designfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products od disinfection include trihadomethanes (THMS) & haloacetic acids (HAA) which are reported elsewhere in this report. *removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed. **CRYPTOSPRDIJUM & GIARDIA** 2016 CRYPTOSPOORDIUM 0 0 0-0 0 0 Cysts/L 2016 Giardia 0 0 0-0 0 0 Cysts/L **Turbidity** **Limit[Treatment Technique)** **Limit[Treatment Technique)** **Limit[Treatment Technique)** **Limit[Treatment Technique)** **Do 78 No Soil runoff** **No Soil runoff** *	2016	SOURCE WATER					ppm		NATURALLY PRESENT IN THE ENVIROMENT				
NOTE: Total organic (TOC) has no health effects. The disinfectant can combine with TOC to form deisinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products od disinfection include trihalomethanes (THMs) & haloacetic acids (HAA) which are reported elsewhere in this report. "removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed. **CRYPTOSPORDIUM & GIARDIA** 2016 CRYPTOSPOORDIUM 0	2016	DRINKING WATER	2.8	1.37-2.80			ppm						
pathogens. By- products od disinfection include trihalomethanes (THMs) & haloacetic acids (HAA) which are reported elsewhere in this report. *removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed. CRYPTOSPOORDIUM & GIARDIA													
divided by the percent of TOC required by TCEQ to be removed. CRYPTOSPORDIUM 0 0-0 0 Co Cysts/L Human & animal fecal waste. 2016 CRYPTOSPOORDIUM 0 0-0 0 Oo Cysts/L Human & animal fecal waste. 2016 glardia 0 0-0 0 Oo Cysts/L Violation Likely Source of Conatmination TURBIDITY 1 NTU 0.78 No Soil runoff Highest single reasurement 1 NTU 0.3 NTU 96.20% No Soil runoff Lowest meant of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration. MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Quarterly Data Lowest result of Single Sample Highest Result of Single Single Sample MRDL Result of Single Single Sample Units Source of Chemical													
2016 CRYPTOSPOORDIUM 0 0-0 O-0 OO Cysts/L 2016 Giardia 0 0-0 O-0 OO Cysts/L TURBIDITY Limit(Treatment Technique)	divided by th	e percent of TOC required by TCEQ to		acids (HAA) which a	ire геропеа eise	wnere in this re	eport. "remov	al ratio is tr	ne percent of TOC remo	oved by the trea	atment pr	ocess	
2016 Glardia 0 0-0 Ocysts/L Human & animal fecal waste. TURBIDITY Clinit (Treatment Technique) Clinit (Treatment Techn			0	0-0			Oo Cysts/L						
Limit(Treatment Technique) Highest single measurement INTU O.78 No Soil runoff Likely Source of Conatmination Note: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration. MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Quarterly Data Ouarterly Data Chemical used Ouarterly Data Ouarterly Ouarterly Ouarterly Ouarterly Ouarterly Ouarterly Ouarterly Ouarterly Ouarterly	2016		0	0-0					- Human & anim			n & animal fecal waste.	
Highest single measurement 1NTU 0.78 No Soil runoff Lowest monthly percentage (%) meeting limit 0.3 NTU 96.20% No Soil runoff NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration. MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Quarterly Data Sample Result of Single Single Sample Output Data Sample Result of Single Sample Sa	TURBIDITY								·				
Lowest monthly percentage (%) meeting limit O.3 NTU 96.20% No Soil runoff NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration. MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Ouarterly Data Sample Sample Sample No Soil runoff No				Limit(Treatr)				Violation	Likely S	Source of Conatmination	
NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration. MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Ouarterly Data Sample Result of Single Single Sample									· · · · · · · · · · · · · · · · · · ·				
MAXIMUM RESIDUAL DISINFECTANT LEVEL Year Chemical used Average Level of Ouarterly Data Sample Result of Single Sample Sa		** * * * * * * * * * * * * * * * * * * *										Soil runoff	
Year Chemical used Average Level of Quarterly Data Sample Result of Single Sample Samp		,	s or the water caused by suspended	particles. We monit	oi il because it is	a good indica	ator or water o	luality and	ine enectiveness of ou	i intration.			
Ouarterly Data Sample Result of Single Sample Sample			Average Level of	Lowest result of	Single	Highest	MRDI	MRDI G	Units			Source of Chemical	
	· oui	Shomedi used				Result of Single			5.110			Source of Shermon	
										8116 1 1			

0

0.115

0.8 0.8

1 N/A

Disinfectant.

Caddo Basin SUD PWD ID: 1160029 CCR Report

2016 Chlorite

Year	Synthetic organic contaminants including pesticides and herbicides	Highest	Range	MCL	MCLG	Units	Violation	Source of Contaminent
2016	2,4,5-TP (Silvex)	Levels lower than detect level	0-0	50	50	ppb	No	Residue of banned herbicide.
2016	2,4-D	Levels lower than detect level	0-0	70	70	ppb	No	Runoff from herbicide used on row crops.
2016	Alachlor	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide used on row crops.
2016	Atrazine	0.61	0.31-0.61	3	3	ppb	No	Runoff from herbicide used on row crops.
2016	Benzo (a) pyrene	Levels lower than detect level	0-0	0	200	ppt	No	Leaching from linings os water storage tanks and distribution lines
2016	Carbofuran	Levels lower than detect level	0-0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa
2016	Chlordane	Levels lower than detect level	0-0	0	2	ppb	No	Residue of banned termiticide Dunoff from berbiside used on debte of way.
2016 2016	Dalapan Di (2-ethylhexyl) adipate	Levels lower than detect level Levels lower than detect level	0-0	200 400	200 400	ppb ppb	No No	Runoff from herbicide used on rights of way. Discharge from chemical factories.
	Di (2-ethylhexyl) phthalate		0-0	0			No	Discharge from rubber and chemical factories.
2016	1 3 3/1	Levels lower than detect level		_	6	ppb		
2016	Dibromochlioropropane	Levels lower than detect level	0-0	0	0	ppt	No	Runoff/leaching from soil fumigantused on soybeans, cotton, pineapples, and orchards.
2016	Di (2-ethylhexyl) adipate	Levels lower than detect level	0-0	400	400	ppb	No	Discharge from chemical factories.
2016	Di (2-ethylhexyl) phthalate	Levels lower than detect level	0-0	0	6	ppb	No	Discharge from rubber and chemical factories.
2016	Dibromochlioropropane	Levels lower than detect level	0-0	0	0	ppt	No	Runoff/leaching from soil fumigantused on soybeans, cotton, pineapples, and orchards.
2016	Dinoseb	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
2016	Endrin	Levels lower than detect level	0-0	2	2	ppb	No	Residue of banned insecticide.
2016	Ethylene dibromide	Levels lower than detect level	0-0	0	50	ppt	No	Residue of banned termiticide.
2016	Heptachlor	Levels lower than detect level	0-0	0	400	ppt	No	Residue of banned termiticide.
2016	Heptachlor epoxide	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor.
2016	Hexachlorobenzene	Levels lower than detect level	0-0	0	1	ppb	No	Dischartge from metal refineries and agricultural chemical factories.
2016	Hexachlorocyclopentadiene	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from chemical factories.
2016	Lindane	Levels lower than detect level	0-0	200	200	ppt	No	Runoff/leaching from insecticide used on cattle, lumber, and gardens.
2016	Methoxychlor	Levels lower than detect level	0-0	40	40	ppb	No	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
2016	Oxamyl [Vydate]	Levels lower than detect level	0-0	200	200	ppb	No	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes.
2016	Pentachlorophenol	Levels lower than detect level	0-0	0	1	ppb	No	Discharge from wood preserving factories.
2016	Simazine	Levels lower than detect level	0-0	4	4	ppb	No	Herbicide runoff.
2016	Toxaphene	Levels lower than detect level	0-0	0	3	ppb	No	Runoff/leaching from insecticide used on cotton and cattle.
Year	Volatile Organic Contaments	Highest	Range	MCLG	MCL	Units	Violation	Source of Contaminent
2016	1,1,1-Trichloroethane	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
2016	1,1,2-Trichloroethane	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from industrial chemical factories.
2016	1,1-Dichloroethylene	Levels lower than detect level	0-0	7	7	ppb	No	Discharge from industrial chemical factories.
2016	1,2,4-Trichlorobenzene	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from textile-finishing factories.
2016	1,2-Dichloroethane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
2016	1,2-Dichloropropane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
2016	Benzene	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories; leaching from gas starage tanks and landfills
2016	Carbon Tetrachloride	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
2016	Chlorobenzene	Levels lower than detect level	0-0	100	100	ppb	No	Dischartge from chemical and agricultural chemical factories.
2016	Dichloromethane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from pharmceutical and chemical factories.
2016	Ethylbenzene	Levels lower than detect level	0-0	0	700	ppb	No	Discharge from petroleum refineries.
2016	Styrene	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
2016	Tetrachloroethylene	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories and dry cleaners.
2016	Toluene	Levels lower than detect level	0-0	1	1	ppm	No	Discharge from petroleum factories.
2016	Trichloroethylene	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
2016	Vinyl Chloride	Levels lower than detect level	0-0	0	2	ppb	No	Leaching from PVC piping; discharge from plastic factories.
2016	Xylenes	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from industrial chemical factories.
2016	cis-1,2-Dichloroethylene	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from industrial chemical factories.
2016	o-Dichlorobenzene	Levels lower than detect level	0-0	600	600	ppb	No	Discharge from industrial chemical factories.
2016	p-Dichlorobenzene	Levels lower than detect level	0-0	75	75	ppb	No	Discharge from industrial chemical factories.
2016	trans-1,2-Dicholoroethylene	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from industrial chemical factories.
	ry and Other Constituents Not Regulated (No as:							·
Year	Contaminants	Highest Level Detected	Range	of Levels I			Units	Likely Source of Contamination
2016	Calcium	85.2		30.7-8	5.2		ppm	Abundant naturally occuring element.
2016	Chloride	70.3	11.2-70.3		ppm	Abundant naturally occuring element; used in water purification; by-product of oil field activity.		
2016	Hardness as Ca/Mg	238	159-238		ppm	Naturally occuring calcium and magnesium.		
2016	Iron	0.02	0.000-0.02		ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.		
2016	Magnesium	6.65	5.85-6.65		ppm	Abundant naturally occurring element.		
2016	Manganese	0.017	0.0005-0.017		ppm	Abundant naturally occurring element.		
2016	Nickel	0.0041	0.0025-0.0041		ppm	Erosion of natural deposits.		
2016	pH	9	0.0025-0.0041 7.1-9.0		ppm	Measure of corrosivity of water.		
2016	Sodium	77.4		26.8-7			ppm	Erosion of natural deposits; by-product of oil field activity.
2016	Sulfate	144		69-14			ppm	Naturally occuring; common industrial by product; by-product of oil field activity.
2016	Total Alkalinity as CaCO3	117		60-1			ppm	Naturally occuring soluble mineral salts.
2016	Total Dissolved Solids	556		194-5	56		ppm	Total dissolved mineral constituents in water.
2016	Total Hardness as CaCO3	268		80-26	8		ppm	Naturally occuring calcium.
2016	Zinc	0.013		0.000-0.	.013		ppm	Moderately abundant naturally occuring element used in the metal industry.