Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

-Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

-Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

-Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. -Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Where Do We Get Our Drinking Water?

CADDO BASIN SUD purchases water from NORTH TEXAS MWD WYLIE WTP. NORTH TEXAS MWD WYLIE WTP provides purchase surface water from Lake Lavon Reservoir located in Collin County.

NORTH TEXAS MWD Violations Tab

Lead and Copper Rule	2							
The Lead and Copper	Rule protects pu	ublic health by n	ninimizing lead and copper levels in drinking water, primarily by reducing					
water corrosivitiy. Lea	d and Copper e	nter drinking wa	ter mainly from corrosion of lead and copper containing plumbing materials.					
	Violation	Violation						
Violation Type	Begin	End	Violation Explanation					
LEAD CONSUMER NOTICE (LCR)	42/20/2047	4/46/2040	We failed to provide the results of lead tap water monitoring to the					
NTMWD	12/30/2017	4/16/2018	consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results.					

CADDO BASIN SUD purchases water from CITY OF FARMERSVILLE. CITY OF

FARMERSVILLE provides purchase surface water from NORTH TEXAS MWD WYLIE WTP Lake Lavon Reservoir located in Collin County.

CITY OF FARMERSVILLE VIOLATIONS

No violations for 2018.

VIOI ATION

Source Water Assessment

TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on the susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and production efforts at our system, contact Leahmon Bryant, General Manager (903) 527-3504

All Drinking Water May Contain Contaminants

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791

Cryptosporidium and Drinking Water

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-479

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information About Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL:

http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc= Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: <u>http://dww.tceq.texas.gov/DWW</u>

Source Water Name LAKE LAVON CC FROM TX0430004 CITY OF FARMERSVILLE Type of Water SW Report Status Location Source Water Name SW FROM NORTH TEXAS MWD CC FROM TX0430044 NORTH Type of Water SW Report Status ____ Location__

DEFINITIONS

The following tables contain scientific terms and measures, some of which may require explanation

> Action Level-The concentration of contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Action Level Goal (ALG)-The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

AVG- Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Contaminant Level or MCL: The highest level of a

contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology LEVEL 1 ASSESSMENT- A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. LEVEL 2 ASSESSMENT- A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions

MAXIMUM RESIDUAL DISINFECTANT LEVEL OR MRDL- The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. MEL - million fibers per liter (a measure of asbestos)

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

mrem:-millirems per year (a measure of radiation absorbed by the body) NA- not applicable

NTU-nephelometric turbidity units (a measure of turbidity)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant

in drinking water

ppt parts per trillion, or nanograms per liter (ng/L) pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppq parts per quadrillion, or picograms per liter (pg/L)

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Violation Likely Source of Contamination
Copper	2018	1.3	1.3	0.7564	1	mdd	z	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2018	0	15	1.22	0	qdd	z	Corrosion of household plumbing systems; Erosion of natural deposits.
Disinfection By-Products	Collection Date	Highest Level	Range of Individual	MCLG	MCL	Units	Violation	Violation Likely Source of Contamination
Haloacetic Acids (HAA5)	2018	29	12.4 - 40.4	No goal for thé total	60	qdd	z	By-product of drinking water disinfection.
** The value in the Highest Level or Average Detected column is the highest a	svel or Averag	te Detected o	column is the high	est average of a	II HAA5 sample	e results c	ollected at	iverage of all HAA5 sample results collected at a location over a year'
Total Trihalomethanes (TTHM)	2018	41	25.5 - 55.3	No goal for the total	80	qdd	z	By-product of drinking water disinfection.
** The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year	evel or Averag	te Detected	column is the high	est average of a	II TTHM sample	e results c	ollected at	a location over a year'
Inorganic Contaminants	Collection Date	Highest Level	Range of Individual	MCLG	MCL	Units	Violation	Violation Likely Source of Contamination
Nitrate [measured as Nitrogen]	2018	1	0.589 - 0.773	10	10	mqq	z	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of deposits.
Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	Violation Source in Drinking Water
Chlorine Residual (Chloramines)	2018	2.42	2.14-2.68	4	4	mqq	z	Water additive used to control microbes.

2018

Annual Drinking Water Quality Report

PWS ID: 1160029

Our Drinking Water Is Regulated

This Annual Water Quality Report for the period of January 1 to December 31, 2018. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2018, our system lost an estimated 19.10 % gallons of water. If you have any questions about the water loss audit please call PWS phone number. If you have any questions about the water loss please call (903) 527-3504.

For More Information About Caddo Basin Special Utility District

If you have questions about this report or concerning your water utility, please contact Leahmon F. Bryant, General Manager, by calling (903) 527-3504 or writing to 156 CR 1118, Greenville, TX 75401-7514. You may also send an email to webadmin@caddobasin.com. We want our valued customers to be informed about their water utility. The Board Meetings are held the Fourth Tuesday of each month at 6:30 PM at The District Office located at 156 CR 1118, Greenville, TX.

CBSUD Board of Directors	
Jerry Leinart	President
Bill Daniel	Vice-President
Elwood Jones	Secretary/Treasurer
James C. Patterson	Director
Mickey Pierson	Director
Gene Martin	Director
Ronnie Clack	Director

En Español Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (903) 527-3504-para hablar con una persona bilingüe en español.

Year	Contaminant	Highest	Range	MCL	MCLG	Units	Violation	Source of Contamine	ent
				REGULATE	ED CONTAMI	NANTS			
2018	CONTAMINANTS Antimony	Levels lower than detect	0-0	6	6	ppb	No	Discharge from petro	leum refineries; fire retardants; ceramics; electronics; solder; & test
2018	Arsenic	level Levels lower than detect	0-0	0	10	ppb	No	addition Erosion of natural dep production wastes.	posits; runoffs orchards; runoff from glass and electronics
2018	Barium	0.068	0.058-0.068	2	2	ppm	No	P	vastes; discharge from metal refineries; erosion of natural deposits
2018	Beryllium	Levels lower than detect level	0-0	4	4	ppb	No	Discharge from metal aerospace, and defe	Irefineries and coal-burning factories; discharge from electrical, nse industries.
2018	Cadmium	Levels lower than detect level	0-0	5	5	ppb	No		ed pipes: erosion of natural deposits; discharge from metal waste batteries and paints
2018	Chromium	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from steel	and pulp mills; erosion of natural deposits.
2018	Fluoride	0.264	0-0.264	4	4	ppm	No	from fertilizer & alumir	
2018	Mercury	Levels lower than detect level	0-0	2	2	ppb	No	Erosion of natural dep landfills; runoff from c	posits; discharge from refineries and factories; runoff from ropland.
2018	Nitrate(measured as Nitrogen) NTMWD	0.503	0.022-0.503	10	10	ppm	No	Runoff from fertilizer u deposits.	use; leaching from septic tanks; sewage; erosion of natural
2018	Nitrate (measured as Nitrogen) CBSUD	1	0.589-0.773	10	10	ppm	No		
2018	Selenium	Levels lower than detect level	0-0	50	50	ppb	No	3 1	leum refineries; erosion of natural deposits discharge from mines.
2018	Thallium ory: Nitrate in drinking water at levels of 10	Levels lower than detect level	0-0	0.5	2	ppb	No	factories.	ronics, glass, and leaching from ore-processing sites, drug
	ods of time because of rainfall or agricult						ancauser	blue baby synuronie. N	
	E CONTAMINANTS beta/photon emitters	8	8.0-8.0	0	50	pCi/L	No	Decay of natural and	man_made denosits
2018 2018	Gross alpha excluding radon	Levels lower than detect	0-0	0	15	pCi/L	No	Decayor naturaranu	
2018	& uranium Radium	level Levels lower than detect level	0-0	0	5	pCi/L	No	Erosion of natural dep	posits
DISINFECTAI	UNTS & DISINFECTION BY-PRODUCTS			-					
2018	BROMATE	Levels lower than detect	0.0-0.0	5	10	ppb	No		RINKING WATER OZONATION
COMPLIANC	ALL SAMPLE RESULTS MAY HAVE BEE E SAMPLING SHOULD OCCUR IN THE F		HIGHEST LEVEL DE	TECTED BECAU	JSE SOME RI	ESULISMAY	BEPARIC	JF AN EVALUATION I	O DE LERMINE WHERE
		47	2.60.4.70		1	555		1	
2018	SOURCE WATER DRINKING WATER	4.7	3.68-4.70 2.20-3.24			ppm		NATURALLY PRESE	NT IN THE ENVIROMENT
2018	REMOVAL RATIO	54.40%	22.5-47.2		%	REMOVAL		N/A	
pathogens. E divided by the	organic (TOC) has no health effects. The 3y-products od disinfection include triha e percent of TOC required by TCEQ to be RDIUM & GIARDIA CRYPTOSPOORDIUM Giardia	alomethanes (THMs) & haloacetic a							
TURBIDITY	Giardia	0	0-0			000313/2			
			Limit(Treatm	ent Technique))				Violation Likely Source of Conatmination
	e measurement hly percentage (%) meeting limit			1 NTU 0.3 NTU			0.4 99.10		No Soil runoff No Soil runoff
	lity is a measurement of the cloudiness of	of the water caused by suspended			a good indic	ator of water q			
_	ESIDUAL DISINFECTANT LEVEL				_				
Year	Chemical used	Average Level of Quarterly Data	Lowest result of Sampl	•	Highest Result of Single Sample	MRDL	WRDLG	Units	Source of Chemical
2018	Chlorine Residual CBSUD	2.42	2.14		2.68	4	<4.0	ppm	Disinfectant used to control microbes.
2018 2018	Chlorine Dioxide Chlorite	0.012	0		0	0.8	0.8 N/A	ppm	Disinfectant.
Note: Water p level betweer	chiorite roviders are required to maintain a minir n 0.5 (ppm) and 4 parts per million (ppm). ng our temporary change in disinfectnat	num chlorine disinfection residual l Water systems using free chlorine	evel of 0.5 parts per are required to main		systems disir	nfecting with cl	hloramines		ge chlorine disinfection residual
Year	Synthetic organic contaminants including pesticides and herbicides	Highest	Range	MCL	MCLG	Units	/iolation	Source of Contamine	ent
2016	2,4,5-TP (Silvex)	Levels lower than detect level	0-0	50	50	ppb	No	Residue of banned h	erbicide.
2016	2,4-D	Levels lower than detect level	0-0	70	70	ppb	No	Runoff from herbicide	e used on row crops.
2018	Alachlor	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide	e used on row crops.
2016	Aldicarb	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide	e used on row crops.
2016	Aldicarb Sulfone	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide	e used on row crops.
p		2 · · · · · · · · · · · · · · · · · · ·				1			

Year	Synthetic organic contaminants including pesticides and herbicides	Highest	Range	MCL	MCLG	Units	Violation	Source of Contaminent
2016	Aldicarb Sulfoxide	Levels lower than detect level	0-0	0	4	ppb	No	Runoff from herbicide used on row crops.
2018	Atrazine	0.3	0.20-0.30	3	3	ppb	No	Runoff from herbicide used on row crops.
2018	Benzo (a) pyrene	Levels lower than detect level	0-0	0	200	ppt	No	Leaching from linings os water storage tanks and distribution lines
2016	Carbofuran	Levels lower than detect level	0-0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa
2018	Chlordane	Levels lower than detect level	0-0	0	2	ppb	No	Residue of banned termiticide
2016	Dalapan	Levels lower than detect level	0-0	200	200	ppb	No	Runoff from herbicide used on rights of way.
2018	Di (2-ethylhexyl) adipate	Levels lower than detect level	0-0	400	400	ppb	No	Discharge from chemical factories.
2018	Di (2-ethylhexyl) phthalate	Levels lower than detect level	0-0	0	6	ppb	No	Discharge from rubber and chemical factories.
2016	Dibromochlioropropane(DBCP)	Levels lower than detect level	0-0	0	0	ppt	No	Runoff/leaching from soil fumigantused on soybeans, cotton, pineapples, and orchards.
2016	Dinoseb	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
2018	Endrin	Levels lower than detect level	0-0	2	2	ppb	No	Residue of banned insecticide.
2016	Ethylene dibromide	Levels lower than detect level	0-0	0	50	ppt	No	Residue of banned termiticide.
2018	Heptachlor	Levels lower than detect level	0-0	0	400	ppt	No	Residue of banned termiticide.
2018	Heptachlor epoxide	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor.
2018	Hexachlorobenzene	Levels lower than detect level	0-0	0	1	ppb	No	Dischartge from metal refineries and agricultural chemical factories.
2018	Hexachlorocyclopentadiene	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from chemical factories.
2018	Lindane	Levels lower than detect level	0-0	200	200	ppt	No	Runoff/leaching from insecticide used on cattle, lumber, and gardens.
2018	Methoxychlor	Levels lower than detect level	0-0	40	40	ppb	No	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
2016	Oxamyl [Vydate]	Levels lower than detect level	0-0	200	200	ppb	No	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes.
2016	Picloram	Levels lower than detect level	0-0	500	500	ppb	No	Herbicide runoff.
2010	Pentachlorophenol	Levels lower than detect level	0-0	0	1		No	Discharge from wood preserving factories.
				-		ppb		
2018	Simazine	0.13	0-0.13	4	4	ppb	No	Herbicide runoff.
2018	Toxaphene	Levels lower than detect level	0-0	0	3	ppb	No	Runoff/leaching from insecticide used on cotton and cattle.
/ear	Volatile Organic Contaments	Highest	Range	MCLG	MCL	Units	Violation	
018	1,1,1-Trichloroethane	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
018	1,1,2-Trichloroethane	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from industrial chemical factories.
018	1,1-Dichloroethylene	Levels lower than detect level	0-0	7	7	ppb	No	Discharge from industrial chemical factories.
018	1,2,4-Trichlorobenzene	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from textile-finishing factories.
018	1,2-Dichloroethane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
2018	1,2-Dichloropropane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
018	Benzene	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories; leaching from gas starage tanks and landfills
2018	Carbon Tetrachloride	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
				_				
018	Chlorobenzene	Levels lower than detect level	0-0	100	100	ppb	No	Dischartge from chemical and agricultural chemical factories.
2018	Dichloromethane	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from pharmceutical and chemical factories.
2018	Ethylbenzene	Levels lower than detect level	0-0	0	700	ppb	No	Discharge from petroleum refineries.
018	Styrene	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
018	Tetrachloroethylene	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories and dry cleaners.
018	Toluene	Levels lower than detect level	0-0	1	1	ppm	No	Discharge from petroleum factories.
018	Trichloroethylene	Levels lower than detect level		0	5			
			0-0			ррр	No	Discharge from metal degreasing sites and other factories.
018	Vinyl Chloride	Levels lower than detect level	0-0	0	2	ppb	No	Leaching from PVC piping; discharge from plastic factories.
018	Xylenes	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from industrial chemical factories.
018	cis-1,2-Dichloroethylene	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from industrial chemical factories.
018	o-Dichlorobenzene	Levels lower than detect level	0-0	600	600	ppb	No	Discharge from industrial chemical factories.
018	p-Dichlorobenzene	Levels lower than detect level	0-0	75	75	ppb	No	Discharge from industrial chemical factories.
018	trans-1,2-Dicholoroethylene	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from industrial chemical factories.
	ry and Other Constituents Not Regulated (No ass					11.		
ear	Contaminants	Highest Level Detected	Range	e of Levels [Detected		Units	Likely Source of Contamination
D18	Aluminum	Levels lower than detect level	3	0-0			ppm	Erosion of natural deposits.
018	Calcium	55.3		43.6-5	5.3		ppm	Abundant naturally occuring element.
018	Chloride	93.7		30.8-93	3.7		ppm	Abundant naturally occuring element; used in water purification; by-product of oil field
018	Iron	Levels lower than detect level		0.0-0	.0		ppm	activity. Erosion of natural deposits; iron or steel water delivery equipment or facilities.
018	Magnesium	9.61		9.18-9			ppm	Abundant naturally occurring element.
018	Manganese	0.0064		0.0037-0.0	064		ppm	Abundant naturally occurring element.
018	Nickel	0.0055		0.0053-0.0			ppm	Erosion of natural deposits.
018	pH	8.51		7.83-8			ppm	Measure of corrosivity of water.
018	Silver	0.001		0-0.00			ppm	Erosion of natural deposits.
018	Sodium	88.6		86.8-88			ppm	Erosion of natural deposits; Erosion of natural deposits; by-product of oil field activity.
018	Sulfate	134		86-13			ppm	Naturally occuring; common industrial by product; by-product of oil field activity.
D18	Total Alkalinity as CaCO3	101		65-10				Naturally occuring soluble mineral salts.
	-						ppm	
018	Total Dissolved Solids	556		288-5			ppm	Total dissolved mineral constituents in water.
018	Total Hardness as CaCO3	188		105-18	зŏ		ppm	Naturally occuring calcium.
				0-0				Moderately abundant naturally occuring element used in the metal industry.